radial coordinate; yo, dimensionless radius of the elasticcore; Ap/l, pressure drop along
the length of the tube; n, dynamic viscosity coefficient; 0, limiting shear stress; t, tan-
gential stress; ¢ = (T — TW)/(To — T,), dimensionless temperature; &,(y), eigenfunctions;
Pe, Peclet number; Jo(y), J;/s(y), Bessel functions.
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HEAT TRANSFER IN GENERALIZED COUETTE FLOW OF A NONLINEAR
VISCQPLASTIC FLUID

Z. P. Shul'man and V. F. Volchenok UDC 536.242:532.135

The steady-state heat-transfer problem is solved for dissipative pressure flow of a
nonlinear viscoplastic fluid between two parallel isothermal plates, one of which is
moving at a constant velocity while the other is stationary.

Let us consider steady~state stabilized flow of a nonlinear viscoplastic fluid between
two parallel infinite plates. The upper plate is moving in its own plane at a constant ve-
locity U in the direction of the axis Oy. A constant pressure gradient grad p = A is pres-—
ent in the gap. The gradient can be of mechanical or other origin, such as a magnetic field
moving along the channel axis and acting on a ferromagnetic suspension. The orientation of
the velocity vector U can coincide with the direction of A or be opposite to it, This model
of generalized Couette flow is valid, for example, for the description of fluid flow in the
screw channels of an extruder. We consider the properties of the medium to be independent
of the temperature. Constant temperatures are maintained on the plates: T(*) on the lower

and T(?®) on the uppez.

It has been shown [2] that three fully developed flow regimes are possible, depending
on the rheological properties of the fluid, the magnitude and direction of the pressure
gradient, and the velocity of the upper plate: 1) flow with a quasisolid zone (core) inside
the main flow; 2) flow with the core adjacent to one of the plates; 3) flow without any core
in the gap.

Accordingly, the equations of motion and thermal energy transport must be solved sep-
arately for the different zones and then matched at the interfaces (Fig. 1). Allowance must
be made for the fact that dissipation of mechanical into heat energy takes place only in
zones I and II, while in zone IIT the thermal conduction law for solids is realized.

To describe the rheological behavior of the fluid-we use the generalized model [1]

1 1 1

T =1+ )" 1
with rheological parameters m, n, and ¥p (all real numbers).

Under the given initial assumptions, the problem is stated in the form

0——22 4 %, (2)

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian
SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Veol. 34, No. 6, pp. 1070-1080,
June, 1978. Original article submitted June 20, 1977.
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Fig. 1. Illustration of the problem.

0—; 0T | av
= A Py +— T —-———-ay . (2)

The velocity and temperature boundary conditions are
Vi(0) =0, Vz (hy=U, (3)
T,0y=T%®, T,(h)=T? (4)

(the index 1 refers to zone I, the index 2 to zone II, and the index 3 to the quasisclid flow
zone III).

Since the properties of the fluid are constant, theequations of motion and thernal en-
ergy transport can be solved autonomously. The hydrodynamic problem has already beern solved
[2]. The expressions for the dimensionless velocity profiles turn out to have the form

W, =~ Y (— 1Dy G — 9% — B4, 0<E<E,
[¢4
(5)

L _
Wo@) =14 — % (— Dy [E—E)™* — (1 — &),

L<ELC],
where
@, :ckiﬁfk g =MIn—k e om
e g, = n T Rl (m— k)

The velocity Ws(£) = Wi(&1) = Wo(£2) = const. Expressions are given in the same paper.[2]
for the characteristic curves separating the zones of different flow regimes in the (aRo
plane, along with expressions for determining the values of Eo and the characteristic values
of o for each flow regime.

The heat-balance equations are written as follows with consideration for the signs in
zones I and II [2]:

1
T - v, \s 1 dv
Ped—L 1 — Lym L =0, 0<y<<y,
dy? [D Jr( ki dy) ] dy Ss4
1 1
e £l To | By R g =0, 1, <y<h,
dy dy
2
1Tz & eTy =0, y<Y<y,
dy?
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After a few simple manipulations we arrive at the dimensionless representations

1 1

4’8 O .
L G —BIE—8" —Bd I"=0, 0<<ELE,
dg? o
a0, | % . - o
E-l--;—(é—go)l(ﬁ—go) —B I"=0, HLEL], (6)
EC)
d§23 =0, & <ELCE,

The boundary conditions and conditions for matching of the solutions at the zone interfaces
are ’

0,(00=0, 0,(1)=1,

0, &) =6,;(¢), 6,(E) =0,y 7
ao, | de, do, do,

A N d§.=§=

(the last two conditions are obtained by matching the heat fluxes at the zone interfaces,
subject to the additional assumption that the change in structure in transition from the
shear zone to the nonshear zone does not alter the value of 1).

The general form of the solution is

L7

0,() = — —;‘— (— 1) Fppnn (& — B + ;" (CE+Cy),

k

1l
O

8

0, (8) = — f (—1)F & — E)% + % (D + Dy), (8
k=0

[

0, (&) = % (EE + E,),

where Cy, Dy, and E5 (i = 1, 2) are constants of integration and

k
n? ry
F — Ck n
Bmn =S G 1+ 9 — R)(m - 3n—F) b
3 . 9
m—+ 3n —
Py = L
1
‘We determine the constants of integration from conditions (1.2) and the relations [2]
Eo_§1=§z"“§o:ﬁov (lO)

gz_gi = 2&0'

After a series of transformations we obtain for the regime with the core in the flow interior
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2 W [ o [ R
& -
+ (1) — g ]+§3’k}, 0<E<E,
£t —2 (= D [ P (1 g 30|

0 = I 3 S por! ﬁgh} » B <CEC S

Pp

(11

N 2
2V D {8 pr

=0

Q
+ (1 —E)% —E‘é"k] + [‘é‘ék — % ——ﬁ‘ék}, E<CELL
. k

When the core is situated at the upper wall,

+ £ 3 = Do [— €—8% + ¢ ( B3 —

k=0

ot

_I=brPognt g )+ ] 0<E<E,
Pr,
Ow®=1 2N 1y, [a (ﬁ%"k—éﬁh + (12)

k=0

+ =k pi') + (ga’h— B —
Dy

——Eﬂfis‘gh-‘)], << .
Py i

When the core is situated at the lower wall,

5+ = B (— 1)¥Fan [(1 ) —
I§'=O

+ é@:l"_ggj__lﬁg’k—l] £ 0<CELE,
3
(13)

gL % 2(— 1 kan[—(s —t) q’k+s((1_go)wh_
B

—PBEE- & +Bo ﬁ%’k“‘) 4 BEE — ﬁq”‘_ ‘l

Pr

{3

L, <EL 1.

When the core has ostensibly "transcended" the upper plate (flow without a core), the temper—
ature profile is given by the expression

0,8 =E+ —2— 2 (— D Fpmn [— (& — 9% + (& — D™ —E3*) + &R, 0<CEC L, (14)
k=0

and when the core has "transcended" the lower plate,
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8 (& =t+ % }] (— 1Py [— € — )% + E((1 —E)% —

!
k=0

— (8™ + (— )™, 0<ES 1. 1)

The flow regimes (and, accordingly, the expression for calculation of the temperature pro-
file) are determined from the values of (a, Bo) according to [2].

If we neglect the dissipation of mechanical energy in the viscous flow zones I and II,
we obtain
BE) =5 ie, T =TV +y(T?—-TD),
Then the expressions for the temperature profile can be written in the form

8@ =t+-2D,@® i=1, 2 3, (16)
o

where Dy(£) denotes functions characterizing the temperature increments due to mechanical
energy dissipation [expressions for D;(£) are given in Table 1 for selected values of m and
n], i.e., the temperature distribution is made up of two parts: 1) a linear part correspond-
ing to the temperature distribution in the moving fluid when dissipation is negligible; 2)

a part depending on the dissipative heat-release values.

1f£ 7(2) > T(l), then heat input from the fluid to the upper wall is possible,-depending
on the magnitudes of the velocity U and grad p = A. The change of direction of heat trans-
fer at the upper wall is determined from the condition

de
d =1
If d@/dglg_:1 < 0, then heat transfer takes place from the fluid to the upper wall; if de/

dE.{£=1 > 0, it goes from the upper wall to the fluid (and the upper wall is heated or cooled,
respectively).
Condition (12) is equivalent to the condition
i

Br-Sen = Q’.ﬁ [
’ Zmn (s Bo)

(18)
where Br = uPUZ/A(T(’) —-T(‘)),Sen = Toh/upU are the Brinkman and Saint-Venant numbers, and
z$n<a’ Bo) is a function of a, Bo depending on the flow regime. For example, in the flow

regime with an interior core

Shn(@s B = B (— 1PFp q)i[a—g‘,)%*‘ —;?-ﬁfsk-(l—go)wggk].
k=0 k 2

The function zin depends implicitly on a insofar as Eo is a function of g [2].
For generalized Couette flow of a Newtonian fluid, expression (18) gives
2
r—_ 28a® (19)
1202 4 4o -1

As grad p = A+ 0 (i.e., as a » =), in which case the generalized Couette flow degenerates
into simple Couette flow, Eq. (19) goes over to the well-known result [3]

Br=2. (20)

Graphs of the velocity profiles are given in [2]. We illustrate the temperature profiles in
the example of a Shvedov—Bingham medium (Fig. 2).

We define the heat-transfer rate S on the plate as
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The function S has the general form

1

%P

S=1+

Br-Sen-P,,, (a, By), (21)

where P__(a, Bo) is a function of a and Bo, its form depending on the flow regime. For exam—
mn ’
ple, in the case of the upper plate in the flow regime with an interior core

Prn(e, B = ¥ (— Dy [(1—@% L G U s‘grl} .
k=0 Dx 73

We illustrate the foregoing results in the example of a Shvedév——Bingham medivm (Fig. 3). For
a fixed dissipation parameter

. 212
Br.Sen = (4h?)

B=2 — —_—
o B, Aty (T® — T

and for fixed values of go (corresponding to a fixed value of A for each specific fluid,

i.e., for given values of 1, and l-lp) the graphs of SZW and S in coordinates o, S havz a

uw
symmetry point (1, 0), i.e.,

Bo = fix, Sy, (@) + Suy (@)= 2. (22}

For fixed values of o (i.e., for fixed U) the graphs have a symmetry axis, namely the Lline
S=1, i.e.,
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o] = fix, Sy (@ By) = — Sy (—a By)- (23)

Moreover, for fixed values of o such that |a| 2 1/2 (i.e., for flow regimes without an inte-
rior core) the dependence of S on Bo exhibits a linear behavior.

The dependence of S on B is linear for any m and n and any flow regimes.

We give special mention to the case T(*) = T(’), i.e., where both plates are maintained
at the same temperature. The dimensionless temperature is given by the relation ¢ = (T —
T(+))/T(?), and the solutions for & follow directly from the solutions for O, i.e.,

;6 =0, —%
Srwy_r@ = St p — L.

On the basis of these relations all the results obtained for unequal temperatures remain
valid in this case.

NOTATION

Dimensioned quantities: A, thermal conductivity; U, velocity of upper plate; grad p =
A, pressure gradient; t, shear stress; to, ultimate shear stress; ¥p, analog of plastic vis~
cosity; m, n, nonlinearity parameters of flow curve; h, width of channel; vy,, ya, bounda-
ries of flow core; y, vertical coordinate; V(y), flow velocity; T(y), temperature of medium;
¥ = dV/dy, shear velocity. Dimensionless quantities: W = V/U, flow velocity; § = y/h, ver-
tical coordinate; &,, £2, boundaries of core; &o, coordinate of plane of zerc shear stress;
6= (T -1/ (T® —1(1)y, dimensionless temperature; a = upU/(Ah)m/nh,Bo= To/Ah, % =AUh?/)-
(T(2) —-T(l)},parameters; Br = u u2/a(1(2) —~ T(‘)), generalized Brinkman number; Sen = .
'toh/ppU, generalized Saint-Venant number; S, dimensionless heat-transfer rate on either plate,
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